首页> 外文OA文献 >Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data
【2h】

Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data

机译:具有不规则监测数据的时空气质模型的语用估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical analyses of health effects of air pollution have increasingly used GIS-based covariates for prediction of ambient air quality in "land use" regression models. More recently these spatial regression models have accounted for spatial correlation structure in combining monitoring data with land use covariates. We present a flexible spatio-temporal modeling framework and pragmatic, multi-step estimation procedure that accommodates essentially arbitrary patterns of missing data with respect to an ideally complete space by time matrix of observations on a network of monitoring sites. The methodology incorporates a model for smooth temporal trends with coefficients varying in space according to Partial Least Squares regressions on a large set of geographic covariates and nonstationary modeling of spatio-temporal residuals from these regressions. This work was developed to provide spatial point predictions of PM2.5 concentrations for the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) using irregular monitoring data derived from the AQS regulatory monitoring network and supplemental short-time scale monitoring campaigns conducted to better predict intra-urban variation in air quality. We demonstrate the interpretation and accuracy of this methodology in modeling data from 2000 through 2006 in six U.S. metropolitan areas and establish a basis for likelihood-based estimation. (C) 2011 Elsevier Ltd. All rights reserved.
机译:空气污染对健康的影响的统计分析越来越多地使用基于GIS的协变量来预测“土地利用”回归模型中的环境空气质量。最近,这些空间回归模型在将监测数据与土地利用协变量相结合时考虑了空间相关性结构。我们提出了一个灵活的时空建模框架和务实的多步估计程序,该程序可以通过监视站点网络上的观测时间矩阵相对于理想的完整空间来适应丢失数据的基本任意模式。该方法包括一个平滑的时间趋势模型,该模型的系数根据空间上的偏最小二乘回归在大量的地理协变量上进行设置,并根据这些回归进行时空残差的非平稳建模。这项工作的目的是使用源自AQS监管监测网络的不定期监测数据以及针对以下内容的补充短期尺度监测活动,为动脉粥样硬化和空气污染(MESA空气)多民族研究提供PM2.5浓度的空间点预测。更好地预测城市内空气质量的变化。我们在对美国六个大都市区2000年至2006年的数据进行建模时证明了这种方法的解释和准确性,并为基于似然估计的方法奠定了基础。 (C)2011 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号